SPGL1

Oct 05, 2021

Contents

1 References 3
2 History 5
2.1 Installation e e e e e e e 5
2.2 SPGLI APL e e e e 6
2.3 ContribUtOrS e e e e e e e e e e e e e 11
Bibliography 13
Index 15

SPGL1

SPGL1 is a solver for large-scale one-norm regularized least squares.
It is designed to solve any of the following three problems:

1. Basis pursuit denoise (BPDN):
min ||x|]1 subjto ||[Ax—Dbl|ls <=0
2. Basis pursuit (BP):
min ||x|]1 subjto Ax=Db
3. Lasso:
min ||[Ax —Dbl|ls subjito ||x| <=7

The matrix A can be defined explicitly, or as a scipy.sparse.linalg.LinearOperator that returns both
both Ax and A7b.

SPGL1 can solve these three problems in both the real and complex domains.

Contents 1

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator

SPGL1

2 Contents

CHAPTER 1

References

The algorithm implemented by SPGL1 is described in these two papers:

e E. van den Berg and M. P. Friedlander, Probing the Pareto frontier for basis pursuit solutions, SIAM J. on
Scientific Computing, 31(2):890-912, November 2008

e E. van den Berg and M. P. Friedlander, Sparse optimization with least-squares constraints, Tech. Rep. TR-
2010-02, Dept of Computer Science, Univ of British Columbia, January 2010

SPGLA1

4 Chapter 1. References

CHAPTER 2

History

SPGL1 has been initially implemented in MATLAB by E. van den Berg and M. P. Friedlander. This project is aimed
at porting of their algorithm in Python. Small modifications are implemented in some areas of the code where more
appropriate implementation choices were identified for the Python programming language.

2.1 Installation

Python 3.5 or greater is required. This package may also work for Python 2.7 or greater, however we do not provide
any guarantee neither we will make any effort to maintain back compatibility with Python 2.

2.1.1 From PyPI

To install spgl1 within your current environment, simply type:

>> pip install spgll

2.1.2 From source

First of all clone the repository. To install spgl1 within your current environment, simply type:

’>> make install

or as a developer:

’>> make dev-install

To install spgll in a new conda environment, type:

’>> make install_conda

https://www.cs.ubc.ca/~mpf/spgl1/

SPGLA1

or as a developer:

’>> make dev-install_conda

2.2 SPGL1 API

2.2.1 Main Solver

spgll(A, Db, tau, sigma, x0, fid, ...]) SPGL1 solver.

spgli.spgli

spgll.spgll (A, b, tau=0, sigma=0, xO=None, fid=None, verbosity=0, iter_lim=None, n_prev_vals=3,
bp_tol=1e-06, Is_tol=1e-06, opt_tol=0.0001, dec_tol=0.0001, step_min=1e-16,
step_max=100000.0, active_set_niters=inf, subspace_min=False, iscomplex=False,
max_matvec=inf, weights=None, project=<function = _norm_ll_project>, pri-

mal_norm=<function _norm_Il1_primal>, dual_norm=<function _norm_l1_dual>)
SPGLI solver.

Solve basis pursuit (BP), basis pursuit denoise (BPDN), or LASSO problems [1] [2] depending on the choice of
tau and sigma:

(BP) minimize [[x[]_1 subj. to Ax =D
(BPDN) minimize [[x[]_1 subj. to | |Ax-b||_2 <= sigma
(LASSO) minimize ||Ax-b|[_2 subj, to | [x||_1 <= tau

The matrix A may be square or rectangular (over-determined or under-determined), and may have any rank.

Parameters

A [{sparse matrix, ndarray, LinearOperator } | Representation of an m-by-n matrix. It is required
that the linear operator can produce Ax and A"T x.

b [array_like, shape (m,)] Right-hand side vector b.

tau [float, optional] LASSO threshold. If different from None, spgll solves LASSO problem
sigma [float, optional] BPDN threshold. If different from None, spgll solves BPDN problem
x0 [array_like, shape (n,), optional] Initial guess of x, if None zeros are used.

fid [file, optional] File ID to direct log output, if None print on screen.

verbosity [int, optional] O=quiet, 1=some output, 2=more output.

iter_lim [int, optional] Max. number of iterations (default if 10 «m).

n_prev_vals [int, optional] Line-search history lenght.

bp_tol [float, optional] Tolerance for identifying a basis pursuit solution.

Is_tol [float, optional] Tolerance for least-squares solution. Iterations are stopped when the ratio
between the dual norm of the gradient and the L2 norm of the residual becomes smaller or
equalto 1s_tol.

6 Chapter 2. History

SPGL1

opt_tol [float, optional] Optimality tolerance. More specifically, when using basis pursuit de-
noise, the optimility condition is met when the absolute difference between the L2 norm of
the residual and the sigma is smaller than opt_tol.

dec_tol [float, optional] Required relative change in primal objective for Newton. Larger
decTol means more frequent Newton updates.

step_min [float, optional] Minimum spectral step.
step_max [float, optional] Maximum spectral step.

active_set_niters [float, optional] Maximum number of iterations where no change in support
is tolerated. Exit with EXIT_ACTIVE_SET if no change is observed for activeSetIt
iterations

subspace_min [bool, optional] Subspace minimization (True) or not (False)
iscomplex [bool, optional] Problem with complex variables (True) or not (False)
max_matvec [int, optional] Maximum matrix-vector multiplies allowed
weights [{float, ndarray}, optional] Weights Win | |Wx | | _1
project [func, optional] Projection function
primal_norm [func, optional] Primal norm evaluation fun
dual_norm [func, optional] Dual norm eval function
Returns
x [array_like, shape (n,)] Inverted model
r [array_like, shape (m,)] Final residual
g [array_like, shape (h,)] Final gradient
info [dict] Dictionary with the following information:
tau, final value of tau (see sigma above)
rnorm, two-norm of the optimal residual
rgap, relative duality gap (an optimality measure)
gnorm, Lagrange multiplier of (LASSO)

stat, 1: found a BPDN solution, 2: found a BP solution; exit based on small gradient, 3:
found a BP solution; exit based on small residual, 4: found a LASSO solution, 5: error:
too many iterations, 6: error: linesearch failed, 7: error: found suboptimal BP solution,
8: error: too many matrix-vector products

niters, number of iterations

nProdA, number of multiplications with A

nProdAt, number of multiplications with A’

n_newton, number of Newton steps

time_project, projection time (seconds)

time_matprod, matrix-vector multiplications time (seconds)
time_total, total solution time (seconds)

niters_1lsqgr, number of Isqr iterations (if subspace_min=True)

xnorml, L1-norm model solution history through iterations

2.2, SPGL1 API

SPGLA1

rnorm2, L2-norm residual history through iterations

lambdaa, Lagrange multiplier history through iterations

References

(11, [2]

Examples using spgll.spgll

* sphx_glr_tutorials_spgll.py

2.2.2 Other Solvers

onepro jector(b, d, tau) One projector.

spg_bp(A, b, ¥**kwargs) Basis pursuit (BP) problem.
spg_bpdn(A, b, sigma, **kwargs) Basis pursuit denoise (BPDN) problem.
spg_lasso(A, b, tau, **kwargs) LASSO problem.

spg_mmv(A, B[, sigma]) MMV problem.

spgl1.oneprojector

spgll.oneprojector (b, d, tau)
One projector.

Projects b onto the (weighted) one-norm ball of radius tau. If d=1 solves the problem:

’minimize_x | [b-x||_2 subject to | |x]|_1 <= tau.

else:

’minimize_x | [b-x||_2 subject to [IDx||_1 <= tau.
Parameters

b [ndarray] Input vector to be projected.

d [{ndarray, float}] Weight vector (or scalar)

tau [float] Radius of one-norm ball.
Returns

x [array_like] Projected vector

spgl1.spg_bp

spgll.spg_bp (A, b, **kwargs)
Basis pursuit (BP) problem.

spg_bp is designed to solve the basis pursuit problem:

(BP) minimize [x| |_1 subject to Ax = Db,

8 Chapter 2

. History

SPGL1

where A is an M-by-N matrix, b is an M-vector. A can be an explicit M-by-N matrix or a scipy.sparse.
linalg.LinearOperator.

This is equivalent to calling ‘‘spgl1(A, b, tau=0, sigma=0)
Parameters

A [{sparse matrix, ndarray, LinearOperator } | Representation of an m-by-n matrix. It is required
that the linear operator can produce Ax and A"T x.

b [array_like, shape (m,)] Right-hand side vector b.

kwargs [dict, optional] Additional input parameters (refer to spgl1.spgll for a list of pos-
sible parameters)

Returns
x [array_like, shape (n,)] Inverted model
r [array_like, shape (m,)] Final residual
g [array_like, shape (h,)] Final gradient
info [dict] See splgl.

Examples using spgll.spg_bp

* sphx_glr_tutorials_spgll.py

spgl1.spg_bpdn

spgll.spg_bpdn (A, b, sigma, **kwargs)
Basis pursuit denoise (BPDN) problem.

spg_bpdn is designed to solve the basis pursuit denoise problem:

(BPDN) minimize | [x]]_1 subject to |[|A x — b|| <= sigma

where A is an M-by-N matrix, b is an M-vector. A can be an explicit M-by-N matrix or a scipy.sparse.
linalg.LinearOperator.

This is equivalent to calling ‘‘spgl1(A, b, tau=0, sigma=sigma)
Parameters

A [{sparse matrix, ndarray, LinearOperator }] Representation of an m-by-n matrix. It is required
that the linear operator can produce Ax and A" T x.

b [array_like, shape (m,)] Right-hand side vector b.

kwargs [dict, optional] Additional input parameters (refer to spgl1.spgll for a list of pos-
sible parameters)

Returns
x [array_like, shape (n,)] Inverted model
r [array_like, shape (m,)] Final residual
g [array_like, shape (h,)] Final gradient
info [dict] See spgll.

2.2, SPGL1 API 9

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator

SPGLA1

Examples using spgll.spg_bpdn

 sphx_glr_tutorials_spgll.py

spgli.spg_lasso

spgll.spg_lasso (A, b, tau, **kwargs)
LASSO problem.

spg_lasso is designed to solve the Lasso problem:

(LASSO) minimize | [Ax — b||_2 subject to | |x||_1 <= tau

where A is an M-by-N matrix, b is an M-vector. A can be an explicit M-by-N matrix or a scipy.sparse.
linalg.LinearOperator.

This is equivalent to calling ‘‘spgl1(A, b, tau=tau, sigma=0)
Parameters

A [{sparse matrix, ndarray, LinearOperator } | Representation of an m-by-n matrix. It is required
that the linear operator can produce Ax and A"T x.

b [array_like, shape (m,)] Right-hand side vector b.

kwargs [dict, optional] Additional input parameters (refer to spgl1.spgll for a list of pos-
sible parameters)

Returns
x [array_like, shape (n,)] Inverted model
r [array_like, shape (m,)] Final residual
g [array_like, shape (h,)] Final gradient
info [dict] See spgll.

Examples using spgll.spg_lasso

» sphx_glr_tutorials_spgll.py

spgll.spg_mmv

spgll.spg_mmv (A, B, sigma=0, **kwargs)
MMV problem.

spg_mmv is designed to solve the multi-measurement vector basis pursuit denoise:

(MMV) minimize | |X]]_1,2 subject to [[A X - B||_2,2 <= sigma

where A is an M-by-N matrix, b is an M-by-G matrix, and * sigma is a nonnegative scalar. A can be an explicit
M-by-N matrix or a scipy.sparse.linalg.LinearOperator.

Parameters

A [{sparse matrix, ndarray, LinearOperator}] Representation of an M-by-N matrix. It is re-
quired that the linear operator can produce Ax and A" T x.

10 Chapter 2. History

https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator
https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.sparse.linalg.LinearOperator.html#scipy.sparse.linalg.LinearOperator

SPGL1

b [array_like, shape (m,)] Right-hand side matrix b of size M-by-G.
sigma [float, optional] BPDN threshold. If different from None, spgll solves BPDN problem

kwargs [dict, optional] Additional input parameters (refer to spgl1.spgll for a list of pos-
sible parameters)

Returns
x [array_like, shape (n,)] Inverted model
r [array_like, shape (m,)] Final residual
g [array_like, shape (h,)] Final gradient
info [dict] See spgll.

Examples using spgll.spg_mmv

* sphx_glr_tutorials_mmvnn.py

» sphx_glr_tutorials_spgll.py

2.3 Contributors

¢ Andreas Doll, andreasdoll
e Matteo Ravasi, mrava87

* David Relyea, drrelyea

2.3. Contributors 11

mailto:mrava@equinor.com
mailto:drrelyea@gmail.com

SPGLA1

12 Chapter 2. History

Bibliography

[1] E. van den Berg and M. P. Friedlander, “Probing the Pareto frontier for basis pursuit solutions”, SIAM J. on
Scientific Computing, 31(2):890-912. (2008).

[2] E. van den Berg and M. P. Friedlander, “Sparse optimization with least-squares constraints”, Tech. Rep. TR-2010-
02, Dept of Computer Science, Univ of British Columbia (2010).

13

SPGLA1

14 Bibliography

Index

O

oneprojector () (in module spgll), 8

S

spg_bp () (in module spgll), 8
spg_bpdn () (in module spgll), 9
spg_lasso () (in module spgll), 10
spg_mmv () (in module spgll), 10
spgll () (in module spgll), 6

15

	References
	History
	Installation
	SPGL1 API
	Contributors

	Bibliography
	Index

